Improving Asset Price Prediction When All Models are False
نویسندگان
چکیده
This study considers three alternative sources of information about volatility potentially useful in predicting daily asset returns: daily returns, intraday returns, and option prices. For each source of information the study begins with several alternative models, and then works from the premise that all of these models are false to construct a single improved predictive distribution for daily S&P 500 index returns. The prediction probabilities of the optimal pool exceed those of the conventional models by as much as 5.29%. The optimal pools place substantial weight on models using each of the three sources of information about volatility.
منابع مشابه
Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملDynamic Pricing with Periodic Review and a Finite set of Prices with Cancellation
In this paper, three dynamic pricing models are developed and analyzed. We assume a limited number of a particular asset is offered for sale over a period of time. This asset is perishable and can be an inventory or a manufacturing capacity. During each period, the seller sets a price for this asset. This price is selected from a predetermined discrete set. The maximum amount which a customer i...
متن کاملPricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process
Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کامل